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ABSTRACT

Combinatorial networks are usually synthesized from integrated-circuit
building blocks. Advances in integrated-circuit processing technology per-
mit the placement of more logic on a single block, but raise two new questions
as to what logical functions should be placed on a block and how combinatorial
networks can be efficiently synthesized from a family of blocks.

The Universal Logic Block (ULB) provides a promising approach towards
answering these questions. A ULB produces a particular function of n Boolean
variables (and its complement) that has the property of covering any Boolean
function of k or fewer variables by suitable input partitioning. Such functions
are known as Globally Universal (GU) functions.

Currently available methods of finding GU functions depend upon realiz-
ing certain equivalence classes of Boolean functions. The enormous growth
rate of these classes limit the practicality of such methods. Techniques
must be found which either avoid the realization of equivalence classes, or
enlarge each class by defining new relations on the set of Boolean functions.

The synthesis of large networks using the GU block as the lo gi c al con-
nective r e m a ins a difficult problem. By placing constraints on the desired
network, realistic design c r it e r i a can be established. Considerations to be
taken into account include size of the block to be used, delays associated with
the block, and the mixing of various types of blocks.

PROBLEM STATUS

This is an interim report on one phase of the problem; work on this and
other phases is continuing.

AUTHORIZATION

NRL Problem BO1-04
Project RR 003-02-41-6150

Manuscript submitted April 25, 1969.
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UNIVERSAL LOGIC BLOCKS

INTRODUCTION

It is increasingly evident that conventional techniques for the design of complex
digital equipment are becoming obsolete (1). The standard minimization procedures and
the corresponding reduced cost functions are now, or will be in the future, no longer
applicable. The current state of the art in the semiconductor fabrication industry demands
that new design techniques use constructively the inherent features of this new technology.

In the past, logical design was based upon the optimum use of logic gates (NAND,
AND, etc.) to realize given switching functions. It was desired to minimize the number
of diodes (input leads) and/or transistors used. Using integrated circuits however, logical
modules can be produced at a cost practically independent of the number of diodes and
transistors contained in the module. Therefore it seems reasonable to assume that the
cost of a complex switching circuit composed of such modules will be determined by the
number of modules used, together with the number of interconnections between modules,
and not by the complexity of circuits within a module. The problem then is two-fold.
First, efficient design techniques must be established for the synthesis of digital circuits
using a fairly complicated module as the logical connective. Second, logical modules
must be found which simplify the synthesis procedure while decreasing the associated
cost.

Relatively little work has been done in the past concerning these two problems. The
most ambitious attempt on the former has been done by Patt (2) and Schneider (3). Patt
defines a Well Ordered Sequence (WOS) module and develops a minimal two-level synthe-
sis procedure using this module. Schneider derives an algorithm for the synthesis of
combinatorial circuits from an arbitrary collection of integrated circuits. More will be
said about both works later.

Presently the choice of an efficient building block is an open question. Early efforts
in this aspect were made by Forslund and Waxman (4), Dunham and North (5), and Dunham,
et al. (6). More recently Elspas et al. (7), Susskind, et al. (8) and Yau and Tang (9) have,
contributed by dealing with "Globally Universal Functions" (GUF's). Of these, however,
only Yau attempted to synthesize larger networks from smaller universal modules. As
will by seen, his approach, although interesting, is limited in nature.

THE UNIVERSAL LOGIC BLOCK

A candidate for a functional block used in the synthesis of larger networks is the
Universal Logic Block (ULB), also referred to as the Globally Universal Block (GUB).
It has been shown by Susskind (8) that networks can be designed using GUB's with reduced
cost functions, even if no formal design procedure is used.

Consider the following cost criteria: a given circuit configuration is scored by adding
the total number of signal-level ties which must be made between integrated-circuit
modules to the total number of input and output signal lines. Using GUB's circuits can
be obtained having scores significantly lower than circuits obtained using the standard
minimization techniques of Quine-McClusky.
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Obviously a cost criteria that must be considered in any large scale design is the
number of modules used. This problem will be discussed in the following two sections
of this report.

We begin our discussions of GUF's by presenting some basic definitions.

1. Let F be a Boolean function of k variables. Let (k - j) of the variables be elimi-
natedby setting them equal to constants. A function G of the remaining j variables is thus
obtained. Function G is said to be a (k - j) th order subfunction of F obtained by biasing.

2. Let (k - j) of the variables be eliminated by setting them equal to other variables.
A function of j variables is obtained. Function G is said to be a (k - j) th order subfunc-
tion of F obtained by duplication.

3. Two functions, f (x 1,... ,xk) and g(yj,. . .,y ), are said to be equivalent under per-
mutation if and only if there exists some one-to-one mapping

M: X--Y

such that

f [M(x1) I M(xk)] =9(y *... k)-

4. Two functions, f(x 1,x 2 , ... ,Xk) and g(y1, . Y k), are said to be equivalent under
permutation and complementation if and only if there exists some one-to-one mapping

.X: x-.Y
such that

f[M(x ),*...M(x>] g(y1 ., *Yk)

where {

x -i

5. Let f be a function of k variables. The set consisting of f and all functions equiva-
lent to f under some (permutation and/or complementation) operation is called an equiv-
alence class under that operation.

6. Let f be a function of k variables. The function f is said to be globally universal
in j < k variables if and only if the set of (k j ) th order subfunctions of f obtained by both
biasing and duplication contain at least one member of every permutation equivalence
class of j variable functions, or the complement of a member.

Therefore we have the following: Given that f(xj,...,xk) is globally universal in j < k
variables, there exists some way of biasing and/or duplicating input leads so that a
member of any desired permutation equivalence class of j variables (or its complement)
can be realized. Since the j input variables may be attached to the input leads in any
order, every member of each permutation equivalence class of j variables may be obtained.
Thus a globally universal j block (GU j) realizes every function of j variables. Also it
can be shown that if f (xl, *;,xk) isGU j,then so is F (xl,.,xk), f(l, .,) and tfx, * ., k)

To be more explicit, consider the following example. There are ten non-trivial
functions of two variables, and they are listed below in groups according to the equivalence
class, to which they belong. All functions with the same designation are members of the
same permutation equivalence class.
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1. AB 5. A+ B

2. AB, AB 6. A+ B, A+ B

3. AB 7. AB+ AB

4. A+ B 8. AB+ AB

It is seen in the following equations how members of the same equivalence class are
obtained by merely permuting the input variables.

1. AB]A B= BA= AB
B-A

2. AB] A-B = BA = AB
B-A

3. AB]A.B= BA= AB
B-A

6. A+ B]JAB= B+ A=A+ B
BOA

7. AB+ ABA-B= BA+ BA= AB+ AB
BOA

Now we can test the function f(xI, x2, x1x2 + x1 3 to see whether it is globally
universal in two variables (i.e., can we realize at least one member of each equivalence
class, or its complement).

By biasing we have:

f(A, 1, B)= A+ AB= A+ B ==5, 1

f(A, B, 1) = AB, f'(B, A, 1)= AB = 2, 6

f(A, B, )= AB+ A= A+ B 4, 3

By duplication we have:

f(A, B B) = AB + AB ==4 7, 8

Therefore according to the definition of GU 2 functions, we see that f(XI, x2, X3 ) is such
a function.

Notice that we have only used four variations of f(x1 , x2 , X3 ) to realize at least one
member of each equivalence class or its complement. Similarly it can be verified that
the function g(xj, x2 , x3) = x x2(D X3 is globally universal in two variables.

There are 68 equivalence classes of three variables under permutation. For a
function to be GU 3, it and its complement must be able to realize at least one member
of each equivalence class, by partitioning the inputs in some way. It can be shown that
no four-variable function can be GU 3 (i.e., the number of three-variable subfunctions
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is 28). Therefore we can not realize all three-variable functions with a single four-variable
function. There do exist, however, many five-variable functions which are GU 3. For
example, the function

f(A,B,C,D,E) = ACD + BCDE + ABDE + BCDE + BCDE + ABCDE + BCDE

can be shown to be GU 3. It should be noted that only true inputs are required at all times.

At this point it is interesting to compare the preceding with similar works of Elspas,
et al. (7). In 8usskind's work it is seen that in reality only equivalence under permutation
is considered, although equivalence under permutation and complementation is mentioned.
Thus it is assumed that only true variables are available at the inptt. Also, since the
basic ULM will have complementary outputs, each time a function is realized we can
assume its complement is also realized. Thus the 68 equivalence classes of three
variables can be broken down into ten genera. Two functions f and g are said to be of
the same genera if and only if f and g are equivalent under permutation and complemen-
tation or f and Z are equivalent under permutation and complementation. Using these
concepts, Elspas presents upper and lower bounds on the minimum number of input leads
necessary for a block to be universal. Susskind presents only lower bounds based upon
equivalence under permutation alone, and the fact that half of the permutation equivalence
classes are realized by the GU function and the other half by its complement.

The upper bound is derived by an iterative construction involving low-order cases.
In the process, Elspas also shows that the existence of a four-input GU 3 block is
impossible.

We have already exhibited a GU 3 block with five inputs; thus the minimum number
of inputs required for a GU 3 block is exactly five. The best upper and lower bounds
are given in Table 1.

Table 1
Minimum Upper and Lower Bounds on the Number

of Inputs a Block Must Have to be GUJ

Susskind Elspas

Bound Best Lower Best Upper
Bound Bound

2 3 3 3

3 5 4 5

4 7 6 8

5 12 10 18

6 22 17 37

Patt (2), in agreeing that the cost of a switching network depends on the number of
modules used, considers the problem of selecting and using a "building block" module.
Although universatility of the module is not his goal, the larger problem of synthesizing
any network is discussed. Since it is desired to use modules all of a single type, they
must be complete. That is, any desired function must be realizable using only that
module as the logical connective. Aside from this property, the block should be asym-
metric and versatile. A switching function f is said to be totally asymmetric if every
permutation of its input variables results in a different output function. Therefore it
can realize n! different functions of n variables. A function f of k variables is a
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subfunction of g of n > k variables, if f can be obtained from g by biasing and/or dupli-
cating one or more of the input variables of g. Thus the more versatile a module is, the
greater the variation in the subfunction of the module. Under this definition, it is clear
that a GUB would be considered most versatile. Patt (2) introduces the WOS module as
one that is complete, asymmetric, and logically versatile. It is a module of n variables
(n - inputs) and one output which realizes the following switching functions.

f = 1®x1 (X 3 4 & ... (3 Xn (D X1 X2 G X1 X2 X3 ( ... (3) X1 X2 ... Xn 1

A procedure which leads to a two-level realization of any function is developed using
a minimum number of WOS modules. It is pointed out that no optimal synthesis procedure
exists for the three-variable WOS module, but that by following a few guidelines low-cost
networks can be designed. More will be said about this subject later in this report.

Yau and Tang (9), without resorting to the use of equivalence classes, presents a
universal block in a direct manner. Note that any logical function of three variables can
be expanded as follows:

f(X 1, x 2, X3 ) = x1 x2 f(0, 0. x3 ) + xi x2 f(O, 1, x3 )

+ xl x2 f(1, 0, x3 ) + x1 x2 f(1, 1, X3)

Now f(0, 0, 3), f(0, 1, X3 ), f(li 0, X3 ) and f(1, 1, X3 ) are all functions
each of these functions assumes one of the four values: X3, X3, 0, or 1
of Fig. 1 can realize this function.

of X3 only, and
. Thus the circuit

C2 =X 2 C =X1

A0= f ( 0~, X 3)

Al f (0,1, X3 )

A2=f(1,O,X3)

A3 = f (1, 1, X3 )

f (XIX 22X3 )

Fig. 1 - Realization of a general three-variable Boolean function

5
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A slight advantage of this circuit configuration is that biasing to 0 or 1 is not nec-
essary. For example, if f(o, 1, x3 ) = 1, then tying Al to x2 would yield the same result.
Similarly, if f ( 1, X3 ) = 0 then tying Al to x would yield the same result.

Consider now a function of four variables, and expand it as follows:

f(x 1, x2, x3, x4 ) = xl x2 X3 f(0, 0 0 x 4 ) + 1 2 X3 f(0, 0 1, X4 )

+ x1 x2 X3 f(0, 1, 0, x4 ) + *-- + X1 X2 x3 (1, 1, 1, x 4 )

The corresponding logic circuit is shown in Fig. 2.

X3 X2 i

AO = f (OO,O,X 4 )

Al =f (0,0, 1,X4 )

LOG I C , f (X1 ,X2 X 3, X4)

A7 = f( 1, 1, , X4 )

Fig. 2 - Universal four-variable function

In a like manner, ULB's in five or more variables can be expanded and then repre-
sented by a similar configuration. A design procedure using ULB's in three-variables
to realize function of n variables will be discussed later.

DISCOVERING UNIVERSAL LOGIC FUNCTIONS

As has been mentioned before, one of the major problems is determining globally
universal functions of n variables. Yau's procedure, which will be discussed later,
requires 2 n-1 +. (n - 1) input terminals, which for even reasonable values of n is an
enormous number. However, Yau avoids the problem of realizing extremely large num-
bers of equivalence classes, and in this sense his solution is tractable.

Since our main objective is to realize large networks composed of smaller building
blocks, the remainder of this section will deal with finding universal functions in two,
three, and four variables. To begin with, we will consider a direct algebraic approach,
which by its nature is useful only in finding GU 2 functions.

Any two-variable Boolean function can be expanded in the canonical AND-OR form,
as follows:

f(x1, X2) = a0 X1 X2 + a, X1 x 2 +' a2 x1 x 2 + a3 x 1 x 2

where the values (0, 1), for each coefficient a., determines the exact function. We will
consider only the nondegenerate functions of exactly two variables. The ten possible
combinations of the ai 's which give rise to the ten functions are shown in Table 2. To
the right of these functions is the corresponding permutation equivalence class, which the
function is a member.

6
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Table 2
Generation of the Ten Nondegenerate Functions of Two Variables

and their Equivalence Classes.

CoeffiiFunti n Equivalence Complement
-o al a a Function Class of Equivalence Class

o 0 0 1 X1X2 15

1 1 3xl+x2 5 1

0 0 1 0 X1x2 2 6

o 1 0 0 x-lx2 2 6

1 1 0 1 -x1+x2 6 2

1 0 1 1 X1+X2 6 2

1 0 0 0 __ 3 4

1 0 0 1 X1X2+xX2 8 

Now we must realize each permutation equivalence class, or its complement, by
modifying a general three-variable function in some way. Any three-variable function
may be expressed as:

f(x 1, x2, x3) = bo x x 2 x 3 + b x x2 x 3 + .. + b7 x x2 x 3..

We now take all nine first-order subfunctions and impose conditions on the b s such that
at least one member of each equivalence class of two variables is realized. The nine
subfunctions are listed as follows:

Biasing Duplication

X1= 0, 1

X2'= 0, 1

x3 = aI

For example, if we set = 0 we obtain

X1 = X2

xl= x3

x2 = x3

f(Ox 2,x 3 ) = b0 X 2 X3 + b1 x2 x 3 + b2 X2 x 3 + b 3 x 2 x 3.

For x 2 = 0, we have

f(x 1 , 0, x 3 ) = bo x X3 + b1 xl x 3 + b4 XI X3 + b5 xl x 3.

In a similar manner we obtain all nine subfunctions of f( x2 ,x 3 ).

7
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Now suppose we want to realize a function from equivalence class or its comple-
ment (i.e., a function of the form xix). It can be seen that for a given equivalence class
or its complement to be realized by a subfunction, one or more sets of the b coefficients
must be equal to the b coefficients for that class. For the x = 0 subfunction, setting
bo =b = 2 = o , and 3 = 1, gives us x2 x 3 , and setting bo = b= = 1 and b3 = 0 gives
us X2 + x3. Thus to realize class 1 or its complement we have the condition, expressed
logically,

bobb 2 b3 + bobjb2 b3 + 1.

Similarly we can realize class 1 or its complement from each of the other eight sub-
functions, so that finally we have the following equation containing nine terms:

(b b b2 b3 + bo b, b2 b3)+ (bo b, b4 b5 + bo b b4 b5)

+ (b2 b4 b7 + bo b3 b4 b7 )= 1,

where the first parenthesizal term corresponds to subfunction 1, the second to subfunction
2, and the last to subfunction 9. A similar equation can now be written for each of the
three remaining equivalence classes, giving us a total of four equations in eight unknowns
(the bi 's). Since there is no direct method of solving a set of Boolean simultaneous
equations, a rather involved procedure yields the following five functions which are
globally universal in two variables.

1. X1 x 2 X 3 + XI X 2 X3

2. XI X3 + xI x2 + x1 x2 X3

3- XI X2 + X X3

4. xI x2 + X1 X2 X 3

5. XI x2 + XI X2 X 3

It should be noted that each of these functions falls into a distinct permutation equivalence
class of three variables.

The method presented above is unsatisfactory for determining GU functions of more
than two variables. For the three-variable case, 34 equations of 32 variables each
would arise.

Elspas (7), by considering the nondegenerate functions of two variables composed of
two general exhibits essentially the same functions as does Susskind for GU 2 blocks.
Since complements are allowed at the inputs, the two genera are x1 x2 and x1 ®3 x2 . It is
easy to see, then, that a function of the form x1 x2 Q x3 is universal in two variables. In
addition, one need only modify x2 and/or X3 to realize all two variable functions.

Both Elspas and Susskind use a similar method to arrive at a GU (j + 1) block from
two GU j blocks, by decomposing a function of n + 1 variables into two functions of n

variables. This procedure will be briefly described now. Any function of j + 1 variables
can be expanded about any variable as follows:

f(x,..., X,...,x j+ l) = Fi f 2(xl .. Ixi jxi+ ... Ixj+

+ Xi f 3 (x1 ... I xi 1 , xi+ 1* ... xj+, l)-

8
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Now f 2 and 3 can each be realized by GU j blocks, as shown in Fig. 3. It should be
noted that in the decomposition, provision must be made for selecting either f1 or fI,
depending upon whether f 2 is f 2 or in fact is f 2 . This is done by the line labeledc. That
is, if c = 1, then f3 = f 1 , and if = 0, then f3 = FT. It should also be noted that this
configuration is wasteful of inputs. Whereas each GU j block required k input leads, the
GU (j + 1) block requires 2k + 2 = 2(k + 1) input leads (i.e., for increasing the universality
by one, we more than double the number of input leads). For j = 2, then, we require
eight input leads to realize a GU 3 block, whereas it was shown that we only need five
input lines. The advantage of this procedure becomes apparent when larger values of i
are required; in addition, no complicated table of input partitions is needed to realize
a specific function.

k >j k>j

C X ; 

GUj GU 

t1 ?1

Fig. 3 - Circuit realization of C + s
expanded function

f3

f f

We now look at methods for determining functions which are universal in three and
four variables. The techniques are in general searches over k variable functions or the
classes to which they belong. Since for > 5 the number of functions and equivalence
classes (and genera) are enormous, it seems reasonable to restrict the universe to be
searched in some way. Elspas (7) does this by (a) considering genera which are most
nearly universal, and (b) considering functions to be representatives of "families."

By exhaustive search methods it was found that the following three functions of four
variables realize nine of the ten genera of three variables.

a. wxz + wy-z + xyz +. wxyz

b. wxy + wxz + wyz + wxyz + wxyz

c.wxz+ wyz+ wxyz+:wxyz

To construct a GU 3 block from these four input blocks, a fifth input is introduced as
shown in Fig. 4.

9
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b hf
or N f Fig. 4 - Construction of a GU 3 block
C

When a is used, then h is an inclusive OR block, whereas when b or c is used, h should
be an exclusive OR block. The tenth genus is produced by tying the fifth input to a vari-
able and partitioning the other four inputs such that g = y + z if c is used, and g = ye if
a or b is used.

Susskind has also determined five input functions which are GU in three variables
using a computer search method. Whereas Elspas (7) searched first for four variable
functions which are almost universal, Susskind proceeds directly to search for five-
variable GU 3 functions. Basically the system generates a 32-bit random number, which
then represents an initial five-variable function. A program then generates the 125
three-variable subfunctions, and determines the number of three-variable permutation
equivalence classes found among them. If this number is 68, then the initial function is
GU 3. If this number is less than 68, the initial function is modified in an attempt to
increase the number of equivalence classes found. The procedure includes an equivalence-
checking program which determines whether or not aGU 3 function has already been found.
In addition, the programming system- determines the number of five-variable equivalence
classes which are globally universal in three variables, and the number of three-variable
equivalence classes realizable by any five-variable function under test, and it tests
hypotheses concerning GU functions. A similar system for GU 4 functions would require
about two man-months to implement; one for GU 5 function is impractical at the present
time.

As previously mentioned, Elspas, in an attempt to further restrict classes to be
searched, introduces the concept of a family of functions. Two functions, f and g, are
said to be of the same family if and only if there exists a linear function of input variables
I ( x, .X ) such that f and g . are of the same genus. Thus all functions of the same
genus are of the same family (i.e., let I - 0). The subsequent search method begins by
selecting an m -variable test function and classifying all of its subfunctions by genus.
The final network consists of a block realizing the test function followed by rmax exclu-
sive OR blocks, and thus has m +: rmax total inputs. The rmax exclusive OR blocks essen-
tially represent the linear function £(xl -; Xn); rmax is defined as

rmax= maxri]

where r is the maximum number of exclusive OR modules required to realize the entire
i th family, given that the test function can produce one or more genera of the i th family
for all i.

The actual eight-input GU 4 block realized was found by using a six-variable test
function, which realizes 214 of the 222 four-variable genera using only a single exclusive
OR at-the output.

King (10) has constrained the problem of finding, a universal block to that of finding
a block which realizes a specified set of functions. His solution is extremely worthwhile,
since it presents a clear-cut algorithmic solution to this related problem. Specifically
he has solved the following. Given a set of v functions ( fl, .2, .. f, ), find a logic block
and accompanying partition of input variables that will realize each function in the set.

10
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DESIGNING WITH UNIVERSAL LOGIC BLOCKS

Presently no systematic design procedure exists for the synthesis of networks using
globally universal blocks as the basic logical connective. This deficiency is illustrated
by the following procedure, mentioned in Susskind.

1. Obtain the minimum sum-of-products expression for the desired function.

2. Draw the standard AND-OR network for the function.

3. Assuming that GU j blocks are available for k inputs, with k a constant, circle
portions of the network involving j or fewer variables.

4. For each circled portion of the network, substitute a GU j block if the lead count
would be reduced by so doing.

It should be noted that an approach similar to the above, although not dealing with
universal blocks, has been developed for the IBM System 360 (11). In this approach,
standard techniques are used for minimization which are independent of logical blocks.
The completed design is now examined by computer. Adjacent clusters of logic are
thereby matched with groupings of logic found on functional blocks. .These groupings are
then assigned to appropriate cards. The method described is very fast, but not
sophisticated.

The following example will illustrate the former method. Suppose

f(A, B, C) = ABC + ABC + ABC + ABC = A® BQ C.

To realize this supposition, we could use a globally universal 3 block, with five-input
leads. The lead count for such a block is 7, including the unused complementary output,
whereas standard AND-OR circuitry would require 21 leads.

It should be noted that the saving involved is not only in lead count. If it is assumed
that the manufacturer has GU 3 blocks on the shelf, then in effect, he already has designed
the circuit. All that is then needed is the proper partitioning of the inputs to the block.
It should also be noted, however, that partitioning the inputs to obtain a particular func-
tion is not a solved problem. Presently, a table would accompany a GU j block for each
j, specifying the proper partition for a desired functional class. It is an easy matter to
obtain the'function once the equivalence class is realized.

Many logical functions have obvious decompositions (12). That is, a Boolean function
may be expressed as a function of other functions. For example, if

f1 (x 1 , x2 ,.;;, X3) = f2 [g( x2, x3 ), h(x 4 , x5 ), t(x 5 , x6 )]

then it could be realized by two GU 3 blocks and two GU 2 blocks, as illustrated in Fig. 5.

Previously we have seen Yau and Tang's method for realizing universal logic blocks.
We will now look at their approach to the design of larger universal networks using smaller
universal blocks as the logical connective.

First, any logical function of n variables can be expanded as follows:

f(x1,..., xn) = xl x2 f(0, 0, x 3 ,* ; xd) + x 1 x2 f(0, 1, x 3 ,..;, xd)

11

+ X1 X2 f(l, 0, X31 -" " " Xd + X1 X2 f (1, 1, 31 -_- _- .1 Xd -
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XI

X2
X23 aGU 3
X3 -

\~~~~~~~9

X4 f X, - ,6

X\5

X6 

Fig. 5 - Realization of f2 [go h t]

Referring back to Fig. 1, it can be seen that if we let C1 - X1, c2 A X2, and AO, A, A2 ,A 3
be tied to f(0, 0, x 3 ,.; ,xn ) ;. f (1, 1, x 3 ,.. Ix n ) respectively, then f(xl,.;;. xn) can be
realized by a GU 3 block. Now expand the residue function as follows:

f(0, 0, x3 , ;., xd = x3 x4 f(0, 0, 0, 0, x5 , ... xn) + x3 X4 F(0, 0, 0, 1, x 5 ,.. x)

+ X3 x4 f(0, 0, 1, 0, x5 , -; x1 + x3 4 f(0, 0, 1,1 , x5 *s xv).

This too can be realized by a GU 3 block with side terminals tied to X3 and X4 and
front terminals A, . A3 tied to f (0, 0, 0, 0, x5,.;;xd.f (0 0 , 1, x5,..;xd
respectively.

Similarly, f(0, 1, x 3 ,.;., Xn). f(1, 1, x3,...x) can be expanded and realized by
ULM-3 blocks. We repeat this process until the residue functions become functions of
xn alone. We then have essentially realized f(x1, . ., x ) by a tree structure consisting
of (n - 1)/2 levels (assuming n is odd), where there are 4 - GU 3's in the jth level of
the structure. Each of the front terminals of the GU 3 block in the last level is connected
to one of the four values 0, 1, x , defined by the corresponding residue function of
variable x. In this construction there are then 2n-1 + n - 1 total input lines for the
resulting universal circuit of n variable. For a more detailed description of this pro-
cedure, and for some interesting uses of coding and fault detection tests, the reader is
referred to Yau and Tang (9).

Schneider (3), in a well-written and lucid thesis, has considered the problem of
synthesizing multiple output logical functions using functional logic blocks as connectives.
The resulting synthesis procedure is in the form of a computer algorithm and is based
on the theory of cubical complexes and decomposition theory.

It is pointed out that a major problem remaining is that of deciding what function is
to be placed on the integrated circuit so as to make the design as efficient as possible.
Specifically, the possibility of using universal logic modules is not discussed. However,
it is felt that some of Schneider's theory will aid in dealing with this problem. Deciding
what subset of universal modules to use will also be of major concern.

12
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PROPOSED INVESTIGATION

As has been seen, most of the work being done today attacks the problem of actually
finding logic modules capable of realizing n-variable Boolean functions. A problem still
remaining is that of finding the best GU block (i.e., the one with the fewest inputs). Since
the lower bound on the number of inputs required for an n-variable universal block
increases very rapidly, it appears that the practicality of a universal block in more than
four or five variables is limited.

It should be noted that 416 five-variable functions were found that are universal in
three variables. It is feasible that by computer search methods seven-variable functions
which are universal in four variables can be found. A similar approach used for finding-
universal functions of five variables seems unfeasible, since there are more than 37 x 106
five-variable equivalence classes. Hence methods must be found which do not require
completely exhaustive techniques for finding these functions.

Assuming the availability of a class of universal blocks (let us say in three, four, or
five variables), the major problem then is to find optimum synthesis techniques using
these blocks. Stated more precisely, we have the following problem: given a Boolean
function of n-variables, realize this function using as few blocks as possible.

A number of questions arise when considering the optimum design problem. It would
seem that the more uses that can be found for a module, the cheaper the per-unit cost of
the module. Now suppose we have three types of universal modules {MA, MB, MC}, where
MA is universal in two variables, MB in three variables, and Mc in four variables. That is,
each module appears as shown in Fig. 6.

M f fMA 

> Of

MC

Fig. 6 - Inventory of modules

Now suppose further that there exist K universal functions of two variables, L universal
functions of three variables, and m universal functions of four variables (obviously k < L
< m). Therefore we can consider that the set of possible modules available for design is
{MAl, MA2 .; X MAKI MB, -. MBL, MLl,. -. McM} . It is also assumed that we have a sufficient
number of each type available. It is desired to realize a Boolean function of n variables,
f (xl,., xn), using modules from our available set as logical connectives. (It should be
noted that this is indeed possible, since obviously each universal block is also complete.)
The overall problem of design can then be broken down by considering the following
statements, based upon appropriate contraints.
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Constraint 1

All modules will be of a single type (i.e., either MAi MBj ormCk ). If this constraint
is observed, the following comments are pertinent.

* What is the minimum number of modules necessary to realize an n variable
Boolean function? Does this depend on the particular function in the block?

* Find design techniques to realize the given function using this minimum number of
modules (or approach this number as close as possible).

* Since each universal module can be realized using one of many possible universal
logic functions, it is conjectured that some functions would be more useful when universal
blocks are used in the synthesis of large networks. Also, by mixing different versions
of a particular block, ease in design or fewer total modules in the design might result.

* A figure of merit associated with each function which realizes a particular block
would be useful, and would aid in the general optimization problem.

* Does the number of logic levels associated with a realization depend upon the
functional form of the block used?

* How does a prespecified number of logic levels affect the synthesis procedure?

Constraint 2

Mixing modules of types MA , MB, and mc are to be used in the design. If this constraint
is observed, we may ask the following questions.

* It seems that using modules all of type mc would result in a network of fewer total
modules. Is this in fact true, or does there exist some optimum mix?

* How are the number of logic levels affected by mixing modules in the design?

* If a network were to be synthesized in the form of a tree, then it seems that using
type Mc modules in the higher levels and type AA modules in the lower levels would be
convenient. Is this indeed true ?

With respect to the first question, Elspas, et al. (13), has shown that if only single-
output, m-input modules of the same type are used as the logical connective to realize a
function of n > m variable, then for n >> m , the choice of a module type is immaterial,
when the cost criterion is the number of modules used.

Some General Questions

1. Can we easily synthesize larger universal networks from smaller ones?

2. Some basic building blocks are desirable to have even though they are not universal
(i.e., various types of gated flip flops, counters, etc.). Does it pay to keep these on the
"shelf" in lieu of synthesizing them from ULB's ?

3. By using the inherent time delay of the ULB's and using suitable feedback, sequen-
tial machines can be realized. How can we use the properties of ULB's to improve the
design of sequential machines? For example, how is the state assignment problem
affected?

14
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Perret and David (14) consider the synthesis of sequential circuits using basic
modules as a connective.

General Remarks

It seems that the conventional Boolean minimization techniques are not applicable to
the optimum design problem. To get a better feel for what an optimum network composed
of ULB's "looks like," exhaustive methods seem to help. Suppose, to begin with, it is
desired to design an optimum network for a given function of five variables, using blocks
which are universal in two variables (i.e., 3 input/2 output blocks). One way to approach
this problem is to try all possible combinations of blocks as connectives, together with
all possible partitions of input variables until the given function is realized. By increas-
ing the number of blocks by one after each try; the first network to realize the function
will contain the minimum number of blocks. This method is similar to the one Hellerman (15)
used for NOR and NAND logic. For ULB's of two and three variables, this procedure is
feasible. What is hoped is that some insight into the minimization picture will be gained.
At the least, we would have obtained a catalog of optimum designs for specific functions.

Since the general problem is one of optimizing the number of blocks, operational
research methods of linear and integer programming could be employed to aid in arriving
at synthesis methods. If weights or figures of merit could be attached to modules accord-
ing to universal types and/or functional types, then some realistic optimization criteria
could be established. If for each design we could compute a number which indicates its
degree of optimization, then we could make decisions based upon these computed numbers.
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